The contribution of Planum Temporale in Number-Person features processing in bilinguals: An fMRI study

Document Type : Research

Authors

1 PhD in Linguistics, Department of Linguistics, Tarbiat Modares University, Tehran, Iran

2 Professor, Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany

3 Assistant Professor, Department of Neuroscience and Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran

Abstract

The Planum Temporale (PT) is a cortical area posterior to Heschl's gyrus and within the Sylvian fissure. Hemispheric PT asymmetry of functional activation during hearing- or language-related tasks is well-established. Due to the role of the PT in language processing, we examined its contribution to phi-feature agreement processing.
The theory of phi-features (Ackema and Neeleman, 2018, 2019) has proposed two core hypotheses for Number and Person agreements. First, R-expressions do not have Person, while pronouns do. Second, all Persons have a Person feature. By contrast, singular is the absence of a Number feature. This account is based, among others, on the evidence reported by Zawiszewski, Santesteban and Laka (2016) and Mancini et al. (2017), which proposes two generalizations for fMRI activation when the verb carries incorrect agreement. In sentences with R-expressions as subject, Person behaves qualitatively differently from Number and will have a quantitatively larger effect. In sentences with pronouns as subject, there are no qualitative differences between Person and Number, but Person will have a quantitatively larger effect. Recently, Meykadeh et al. (in press) addressed the case where R-expressions and Pronouns were used as subject, respectively, for Number and Person Violations and showed that Number Violations evoked more effects than Person Violations in posterior Superior Temporal Gyrus. The authors suggested that R-expression and pronoun processing are qualitatively different. It is currently unknown whether this pattern is also true for the PT area. Hence, in the present analysis we investigated the contribution of PT to phi-features processing of L1 and L2 sentences.
The current study addresses the following questions:

To what extent is left and right PT involved in phi-features processing by balanced bilinguals?
How does the PT area contribute to L1-L2 Number-Person phi-features processing?
Is the PT area equipped with feature-mapping mechanism to identify Number and Person features?

To answer these questions, we adapted a bilingual task with an alternating language switching paradigm, in a population of balanced bilinguals and applied fMRI recordings.

Keywords

Main Subjects


  1. Abbasi, A. (2014). Zero morpheme. Language Science2(2), 13-36. https://doi.org/10.22054/ls.2014.1078 [In Persian]
  2. Ackema, P., & Neeleman, A. (2018). Features of person: From the inventory of persons to their morphological realization. MIT Press. https://mitpress.mit.edu/9780262535618/features-of-person/
  3. Ackema, P., & Neeleman, A. (2019). Processing differences between person and number: A theoretical interpretation. Frontiers in psychology, 10(211), 1-10. https://doi.org/10.3389/fpsyg.2019.00211
  4. Albouy, P., Benjamin, L., Morillon, B., & Zatorre, R. J. (2020). Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science367(6481), 1043-1047. https://doi.org/10.1126/science.aaz3468
  5. Altarelli, I., Leroy, F., Monzalvo, K., Fluss, J., Billard, C., Dehaene-Lambertz, G., Galaburda, A. M., & Ramus, F. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human brain mapping, 35(12), 5717–5735. https://doi.org/10.1002/hbm.22579
  6. Bloom, J. S., Garcia-Barrera, M. A., Miller, C. J., Miller, S. R., & Hynd, G. W. (2013). Planum temporale morphology in children with developmental dyslexia. Neuropsychologia, 51(9), 1684-1692. https://doi.org/10.1016/j.neuropsychologia.2013.05.012
  7. Chance, S. A., Casanova, M. F., Switala, A. E., & Crow, T. J. (2008). Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain, 131(12), 3178-3192. https://doi.org/10.1093/brain/awn211
  8. Declerck, M., & Philipp, A. M. (2015). A review of control processes and their locus in language switching. Psychonomic bulletin & review, 22(6), 1630-1645. https://doi.org/10.3758/s13423-015-0836-1
  9. Den Dikken M. (2019). The attractions of agreement: Why person is different. Frontiers in psychology, 10(978), 1-18. https://doi.org/10.3389/fpsyg.2019.00978
  10. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Jr, Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1-2), 145-177. https://doi.org/10.1016/j.cognition.2003.11.002
  11. Dunn, A. L., & Fox Tree, J. E. (2009). A quick, gradient Bilingual Dominance Scale. Bilingualism: Language and Cognition, 12(3), 273–289. https://doi.org/10.1017/S1366728909990113
  12. Embick, D., Marantz, A., Miyashita, Y., O'Neil, W., & Sakai, K. L. (2000). A syntactic specialization for Broca's area. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 6150-6154. https://doi.org/10.1073/pnas.100098897
  13. Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind, and brain. Nature human behaviour, 1(10), 713–722. https://doi.org/10.1038/s41562-017-0184-4
  14. Friston K. (2012). Ten ironic rules for non-statistical reviewers. NeuroImage, 61(4), 1300-1310. https://doi.org/10.1016/j.neuroimage.2012.04.018
  15. Fukutomi, H., Glasser, M. F., Zhang, H., Autio, J. A., Coalson, T. S., Okada, T., Togashi, K., Van Essen, D. C., & Hayashi, T. (2018). Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. NeuroImage, 182, 488–499. https://doi.org/10.1016/j.neuroimage.2018.02.017
  16. Galaburda, A. M., LeMay, M., Kemper, T. L., & Geschwind, N. (1978). Right-left asymmetrics in the brain. Science, 199(4331), 852-856. https://doi.org/10.1126/science.341314
  17. Geschwind, N., & Levitsky, W. (1968). Human brain: Left-right asymmetries in temporal speech region. Science, 161(3837), 186–187. https://doi.org/10.1126/science.161.3837.186
  18. Green, D. W. (2003). The neural basis of the lexicon and the grammar in L2 acquisition: The convergence hypothesis. In R. van Hout, A. Hulk, F. Kuiken & R. Towell (Eds.), The interface between syntax and the lexicon in second language acquisition (pp. 197-218). John Benjamins. https://doi.org/10.1075/lald.30.10gre
  19. Greve, D. N., Van der Haegen, L., Cai, Q., Stufflebeam, S., Sabuncu, M. R., Fischl, B., & Brysbaert, M. (2013). A surface-based analysis of language lateralization and cortical asymmetry. Journal of cognitive neuroscience25(9), 1477-1492. https://doi.org/10.1162/jocn_a_00405
  20. Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in neurosciences25(7), 348–353. https://doi.org/10.1016/S0166-2236(02)02191-4
  21. Hagoort, P. (2013). MUC (memory, unification, control) and beyond. Frontiers in Psychology, 4(416), 1-13. https://doi.org/10.3389/fpsyg.2013.00416
  22. Hartsuiker, R. J., Pickering, M. J., & Veltkamp, E. (2004). Is syntax separate or shared between languages? Cross-linguistic syntactic priming in Spanish-English bilinguals. Psychological science, 15(6), 409-414. https://doi.org/10.1111/j.0956-7976.2004.00693.x
  23. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in cognitive sciences4(4), 131-138. https://doi.org/10.1016/s1364-6613(00)01463-7
  24. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature reviews neuroscience8(5), 393–402. https://doi.org/10.1038/nrn2113
  25. Hirnstein, M., Westerhausen, R., & Hugdahl, K. (2013). The right planum temporale is involved in stimulus-driven, auditory attention--evidence from transcranial magnetic stimulation. PloS one8(2), e57316. https://doi.org/10.1371/journal.pone.0057316
  26. Hollingshead, A. (1975). Four Factor Index of Social Status [Unpublished Manuscript]. New Haven, CT: Yale University Department of Sociology. https://www.scirp.org/reference/referencespapers?referenceid=557417
  27. Hunter, M. D., Griffiths, T. D., Farrow, T. F., Zheng, Y., Wilkinson, I. D., Hegde, N., Woods, W., Spence, S. A., & Woodruff, P. W. (2003). A neural basis for the perception of voices in external auditory space. Brain126(1), 161–169. https://doi.org/10.1093/brain/awg015
  28. Indefrey, P., and Cutler, A. (2004). Prelexical and lexical processing in listening. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences III, (3rd ed., pp. 756-774). MIT Press. https://pure.mpg.de/rest/items/item_58547_3/component/file_58548/content
  29. Jakab, A., Meuwly, E., Feldmann, M., Rhein, M. V., Kottke, R., O'Gorman Tuura, R., Latal, B., Knirsch, W., & Research Group Heart and Brain (2019). Left temporal plane growth predicts language development in newborns with congenital heart disease. Brain, 142(5), 1270–1281. https://doi.org/10.1093/brain/awz067
  30. Khodadadi, M., Asadzadeh, H., Kalantar Ghoreishi, M., and Amani, H. (2014). Working memory test. Daneman M. & Carpenter P. A., Software. Tehran: Institute for Behavioral & Cognitive Sciences. https://www.sinapsycho.com/Shop/Product/1342 [In Persian]
  31. Knaus, T. A., Kamps, J., Foundas, A. L., & Tager-Flusberg, H. (2018). Atypical PT anatomy in children with autism spectrum disorder with expressive language deficits. Brain imaging and behavior12(5), 1419–1430. https://doi.org/10.1007/s11682-017-9795-7
  32. Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid syntactic analysis. Brain Lang., 98, 74–88. https://doi.org/10.1016/j.bandl.2006.02.003
  33. Mancini, S. Molinaro, N & Carreiras, M. (2013). Anchoring agreement in comprehension. Language and Linguistics Compass, 7(1), 1-21. https://doi.org/10.1111/lnc3.12008
  34. Mancini, S., Quiñones, I., Molinaro, N., Hernandez-Cabrera, J. A., & Carreiras, M. (2017). Disentangling meaning in the brain: Left temporal involvement in agreement processing. Cortex86, 140-155. https://doi.org/10.1016/j.cortex.2016.11.008
  35. Meykadeh, S. (2021). An investigation of the effects of language proficiency and age of acquisition on neural organization for morphosyntactic processing using ERPs and fMRI [Doctoral dissertation, Tarbiat Modares University], Tehran, Iran. https://parseh.modares.ac.ir/thesis.php?id=10004542&sid=1&slc_lang=en [In Persian]
  36. Meykadeh, A., Golfam, A., Batouli, SAH. & Sommer, W. (2021). Overlapping but language-specific mechanisms in morphosyntactic processing in highly competent L2 acquired at school entry: fMRI evidence from an alternating language switching task. Frontiers in Human Neuroscience, 26(15), 1-13. https://doi.org/10.3389/fnhum.2021.728549
  37. Meykadeh, A., Golfam, A., Nasrabadi, AM., Ameri, H. & Sommer, W. (2021). First Event-Related Potentials evidence of auditory morphosyntactic processing in a subject-object-verb nominative-accusative language (Farsi). Frontiers in psychology, 16(12), 1-9. https://doi.org/10.3389/fpsyg.2021.698165
  38. Meykadeh, S., Golfam, A., Batouli, S. A. H., & Sommer, W. (2023a). The neural basis of Number and Person phi-features processing: An fMRI study in highly proficient bilinguals. Bilingualism: Language and Cognition, 1–16. https://doi.org/10.1017/S1366728923000615
  39. Meykadeh, S., Khadem, A., Sulpizio, S. & Sommer, W. (2023b). Functional connectivity during morphosyntactic processing: An fMRI study in balanced Turkish-Persian bilinguals. Journal of Neurolinguistics, 68 (101162), 1-12. https://doi.org/10.1016/j.jneuroling.2023.101162
  40. Meykadeh, S. & Sommer, W., Batouli, SAH. (2023a). Thalamus and bilingualism: Evidence from fMRI. Linguistics and Khorasan Dialects. 15(3), 29-51. https://doi.org/10.22067/jlkd.2023.83396.1179 [In Persian]
  41. Meykadeh, S. & Sommer, W., Batouli, SAH. (2023b). the cerebellum and grammatical agreement in bilinguals: Evidence from grammaticality judgments using fMRI. Language Science, 10(180), 309-342. https://doi.org/10.22054/ls.2023.74871.1591 [In Persian]
  42. Meykadeh, S., Sommer, W., & Batouli, S. (2024). Putamen and L1-L2 sentence comprehension: Evidence from functional magnetic resonance mapping. Journal of Researches in Linguistics, 16(1), 95-110. https://doi.org/10.22108/jrl.2024.138007.1777 [In Persian]
  43. Moffat, S. D., Hampson, E., & Lee, D. H. (1998). Morphology of the planum temporale and corpus callosum in left handers with evidence of left and right hemisphere speech representation. Brain121(12), 2369–2379. https://doi.org/10.1093/brain/121.12.2369
  44. Obleser, J., & Kotz, S. A. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cerebral cortex20(3), 633-640. https://doi.org/10.1093/cercor/bhp128
  45. Ocklenburg, S., Friedrich, P., Fraenz, C., Schlüter, C., Beste, C., Güntürkün, O., & Genç, E. (2018). Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Science advances4(7), 1-8. https://doi.org/10.1126/sciadv.aar6830
  46. Pahs, G., Rankin, P., Helen Cross, J., Croft, L., Northam, G. B., Liegeois, F., Greenway, S., Harrison, S., Vargha-Khadem, F., & Baldeweg, T. (2013). Asymmetry of planum temporale constrains interhemispheric language plasticity in children with focal epilepsy. Brain136(10), 3163–3175. https://doi.org/10.1093/brain/awt225
  47. Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current opinion in neurobiology15(2), 202–206. https://doi.org/10.1016/j.conb.2005.03.007
  48. Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67-70. https://doi.org/10.1093/scan/nsm006
  49. Pollmann, S. (2010). A Unified Structural-Attentional Framework for Dichotic Listening. In Kenneth Hugdahl, and Rene Westerhausen (Eds.), The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres (pp. 441-468). MIT Press. https://doi.org/10.7551/mitpress/9780262014137.003.0326
  50. Pourmohammad, M. (2019). Psycholinguistics. SAMT. https://samta.samt.ac.ir/product/18809 [In Persian]
  51. Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences1191, 62-88. https://doi.org/10.1111/j.1749-6632.2010.05444.x
  52. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A., Mooney, R. D., Platt, M. L., & White, L. E. (2018). Neuroscience (6th ed.). Sinauer Associates.
  53. Ratnanather, J. T., Poynton, C. B., Pisano, D. V., Crocker, B., Postell, E., Cebron, S., Ceyhan, E., Honeycutt, N. A., Mahon, P. B., & Barta, P. E. (2013). Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophrenia research150(2-3), 476–483. https://doi.org/10.1016/j.schres.2013.08.014
  54. Rodriguez-Fornells, A., Rotte, M., Heinze, H. J., Nösselt, T., & Münte, T. F. (2002). Brain potential and functional MRI evidence for how to handle two languages with one brain. Nature415(6875), 1026–1029. https://doi.org/10.1038/4151026a
  55. Rojas, D. C., Camou, S. L., Reite, M. L., & Rogers, S. J. (2005). Planum temporale volume in children and adolescents with autism. Journal of autism and developmental disorders35(4), 479–486. https://doi.org/10.1007/s10803-005-5038-7
  56. Schmitz, J., Fraenz, C., Schlüter, C., Friedrich, P., Jung, R. E., Güntürkün, O., Genç, E., & Ocklenburg, S. (2019). Hemispheric asymmetries in cortical gray matter microstructure identified by neurite orientation dispersion and density imaging. NeuroImage189, 667–675. https://doi.org/10.1016/j.neuroimage.2019.01.079
  57. Sommer, I., Ramsey, N., Kahn, R., Aleman, A., & Bouma, A. (2001). Handedness, language lateralisation and anatomical asymmetry in schizophrenia: Meta-analysis. The British journal of psychiatry178, 344-351. https://doi.org/10.1192/bjp.178.4.344
  58. Steinmetz H. (1996). Structure, functional and cerebral asymmetry: In vivo morphometry of the planum temporale. Neuroscience and biobehavioral reviews20(4), 587–591. https://doi.org/10.1016/0149-7634(95)00071-2
  59. Tzourio-Mazoyer, N., & Mazoyer, B. (2017). Variations of planum temporale asymmetries with Heschl's Gyri duplications and association with cognitive abilities: MRI investigation of 428 healthy volunteers. Brain structure & function222(6), 2711–2726. https://doi.org/10.1007/s00429-017-1367-5
  60. Tzourio-Mazoyer, N., Crivello, F., & Mazoyer, B. (2018). Is the planum temporale surface area a marker of hemispheric or regional language lateralization? Brain structure & function223(3), 1217–1228. https://doi.org/10.1007/s00429-017-1551-7
  61. Tzourio-Mazoyer, N., Maingault, S., Panzieri, J., Pepe, A., Crivello, F., & Mazoyer, B. (2019). Intracortical myelination of heschl's gyrus and the planum temporale varies with heschl's duplication pattern and rhyming performance: An investigation of 440 healthy volunteers. Cerebral cortex29(5), 2072-2083. https://doi.org/10.1093/cercor/bhy088
  62. Ullman, M. T. (2001). The neural basis of lexicon and grammar in first and second language: The declarative/procedural model. Bilingualism: language and cognition. 4(2), 105-122. https://doi.org/10.1017/S1366728901000220
  63. Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: music and speech. Trends in cognitive sciences6(1), 37–46. https://doi.org/10.1016/s1364-6613(00)01816-7
  64. Zawiszewski, A., Santesteban, M., & Laka, I. (2016). Phi-features reloaded: an even-related potential study on Person and Number agreement processing. Applied Psycholinguistics, 37(3), 601-626. https://doi.org/10.1017/S014271641500017X