تحلیل صوت‌شناختی پارامترهای تأثیرگذار بر گوناگونی های بین-گوینده در گویشوران دوزبانۀ فارسی-انگلیسی*

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه زبان‌شناسی، دانشگاه اصفهان، اصفهان، ایران

2 دکترای تخصصی زبان‌شناسی، دانشگاه الزهرا (س)، تهران، ایران

3 دانشیار گروه زبان‌شناسی، دانشگاه اصفهان، اصفهان، ایران

چکیده

پژوهش حاضر بر آن است بر مبنای رویکرد صوت‌شناختی و در چارچوب مقایسۀ قضایی گوینده به بررسی مجموع ه­ای از پارامترهای صوت‌شناختی تأثیرگذار بر گوناگونی های بین-گوینده در گویندگان دوزبانۀ فارسی-انگلیسی بپردازد تا از میان آن­ها بهترین و مناسب‌ترین پارامترهای صوت‌شناختی فردویژه مشخص شود. به این منظور، استخراج پارامترهای صوت‌شناختی فرکانس پایه و فرکانس سازه‌های اول تا چهارم از طریق استخراج همة واکه‌های زنجیره‌های آوایی از پیکرۀ آوایی میراث که شامل صدای افراد دوزبانۀ فارسی-انگلیسی در دو سبک خوانداری و بداهه است، انجام پذیرفت. سنجش مقادیر فرکانس پایه و فرکانس سازهای اول، دوم، سوم و چهارم  به‌شیوۀ بلندمدت انجام شد. نمونه‌های آوایی با استفاده از برنامة پرات (ویرایش ۶.۲.۰۹) مورد تجزیه‌ و تحلیل صوت‌شناختی قرار گرفت. تحلیل آماری داده‌ها با استفاده از نرم‌افزار آر (ویرایش ۴.۱.۰) انجام گرفت. یافته‌ها نشان داد که تفاوت معنادارای میان پارامترهای صوت‌شناختی مورد بررسی در دو زبان فارسی و انگلیسی و نیز دو سبک گفتاری خوانداری و بداهه وجود دارد. با این حال، این پارامترها همچنان در نشان دادن گوناگونی‌های بین-گوینده عملکرد مناسبی داشته‌اند. فرکانس پایه، فرکانس سازۀ اول و فرکانس سازۀ سوم در هر دو گروه زنان و مردان بهتر توانسته‌اند گویشوران دوزبانۀ فارسی-انگلیسی را از یک‌دیگر متمایز کنند. همچنین همبستگی اندک میان فرکانس پایه با فرکانس سازه‌های اول و سوم نمایانگر آن است که این پارامترها اطلاعات متفاوتی در مورد صدای گویندگان منتقل می‌کنند؛ در نتیجه، ترکیب آن‌ها می‌تواند در امر تشخیص هویت گوینده مؤثر باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Acoustic analysis of parameters affecting the between-speaker variability in Persian-English bilinguals

نویسندگان [English]

  • Homa Asadi 1
  • Maral Asiaee 2
  • Batool Alinezhad 3
1 Assistant Professor in General Linguistics, University of Isfahan, Isfahan, Iran
2 Ph.D. in General Linguistics, Alzahra University, Tehran, Iran
3 Associate Professor in General Linguistics, University of Isfahan, Isfahan, Iran
چکیده [English]

Human voices are unique, and for this reason, speakers can be identified by their voices. This shows that speech sounds contain speaker-specific information that can be reflected in the acoustic properties of speech signals. There are many individuals around the world who speak two or more languages, adding a fascinating dimension of variability to language perception and production. However, it remains unclear whether bilinguals alter their voice when switching between languages. A holistic view of bilingualism suggests that bilinguals are an integrated whole that cannot be separated into distinct parts; instead, they possess their own specific linguistic configuration (Grosjean, 1989). Moreover, languages differ in their segment inventories, rules of segmental combinations, as well as spectral and rhythmic characteristics of speech. Speaking styles can also contribute to within-speaker variability in acoustic parameters. Despite these factors, little is known about the influence of language and speaking style on within- and between-speaker vocal variability. This study aims to investigate how acoustic features, specifically long-term F0 and long-term formant frequencies (F1-F4), contribute to speaker individuality in Persian-English bilingual speakers and to what extent these features can discriminate between bilingual speakers.

کلیدواژه‌ها [English]

  • Acoustic Phonetics
  • Bilingual Speaker Identification
  • Formant Frequency
  • Fundamental Frequency
  1. Abercrombie, D. (1967). Elements of General Phonetics. UK: Edinburgh University Press.
  2. Afshan, A., Kreiman, J., & Alwan, A. (2020). Speaker discrimination in humans and machines: Effects of speaking style variability. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2020-Octob(September), 3136–3140. https://doi.org/10.21437/Interspeech.2020-3004
  3. Altenberg, E. P., & Ferrand, C. T. (2006). Fundamental Frequency in Monolingual English, Bilingual English / Russian , and Bilingual English / Cantonese Young Adult Women. Journal of Voice, 20(1), 86–96. https://doi.org/10.1016/j.jvoice.2005.01.005
  4. Asadi, H., Nourbakhsh, M., Sasani, F., & Dellwo, V. (2018). Examining long-term formant frequency as a forensic cue for speaker identification : An experiment on Persian. In M. Nourbakhsh, H. Asadi, & M. Asiaee (Eds.), Proceedings of the First International Conference on Laboratory Phonetics and Phonology (pp. 21–28). Tehran: Neveesh Parsi Publications.
  5. Asadi, H., Nourbakhsh, M., & Sassani, F. (2019). Between-speaker variability of voiceless fricatives in Persian. Language Related Research, 10(1), 129–147. http://lrr.modares.ac.ir/article-14-3720-en.html
  6. Asiaee, M., Nourbakhsh, M., & Skarnitzl, R. (2019). Can LTF discriminate bilingual speakers? Proceedings of the 28th Annual Conference of the International Association for Forensic Phonetics and Acoustics (IAFPA), 41–42.
  7. Baldwin, J. R., & French, P. (1990). Forensic Phonetics. London: Printer Publishers. http://hdl.handle.net/1885/91429
  8. Boersma, P., & Weenink, D. (2022). Praat: Doing phonetics by computer (6.1.39). http://www.praat.org/
  9. Cheng, A. (2020).  Cross-linguistic f 0 differences in bilingual speakers of English and Korean . The Journal of the Acoustical Society of America, 147(2), EL67–EL73. https://doi.org/10.1121/10.0000498
  10. Corretge, R. (2022). Praat Vocal Toolkit. http://www.praatvocaltoolkit.com
  11. Debruyne, F., Decoster, W., Van Gijsel, A., & Vercammen, J. (2002). Speaking fundamental frequency in monozygotic and dizygotic twins. Journal of Voice : Official Journal of the Voice Foundation, 16(4), 466–471. https://doi.org/10.1016/s0892-1997(02)00121-2
  12. Dorreen, K. (2017). FUNDAMENTAL FREQUENCY DISTRIBUTIONS OF BILINGUAL SPEAKERS IN FORENSIC SPEAKER COMPARISON [The University of Canterbury]. Retrieved from <https://doi.org/10.1017/CBO9781107415324.004>
  13. Foulkes, P., & Barron, A. (2000). Telephone speaker recognition amongst members of a close social network. International Journal of Speech, Language and the Law, 7(2), 180–198. https://doi.org/10.1558/sll.2000.7.2.180
  14. Gold, E. (2014). Calculating likelihood ratios for forensic speaker comparisons using phonetic and linguistic parameters. (Phd dissertation), The University of York, Toronto, Canada.
  15. Gold, E., French, P., & Harrison, P. (2013). Examining long-term formant distributions as a discriminant in forensic speaker comparisons under a likelihood ratio framework. Proceedings of Meetings on Acoustics, 19. https://doi.org/10.1121/1.4800285
  16. Grosjean, F. (1989). Neurolinguists, beware! The bilingual is not two monolinguals in one person. Brain and Language, 36(1), 3–15. https://doi.org/https://doi.org/10.1016/0093-934X(89)90048-5
  17. Grosjean, F. (2010). Bilingual: Life and Reality. Cambridge: Harvard University Press. http://www.jstor.org/stable/j.ctt13x0ft8
  18. He, L., Zhang, Y., & Dellwo, V. (2019). Between-speaker variability and temporal organization of the first formant. In The Journal of the Acoustical Society of America, 145(3), 209–214. https://doi.org/10.1121/1.5093450
  19. Heeren, W., Vloed, D., & Vermeulen, J. (2014). Exploring long-term formants in bilingual speakers. IAFPA’s 2014 Annual Conference Book of Abstracts, 2014, 3, 39.
  20. Holm, S. (2003). Individual use of acoustic parameters in read and spontaneous speech. Phonum 9, 9, 157–160.
  21. Järvinen, K., Laukkanen, A., & Aaltonen, O. (2013). Speaking a foreign language and its effect on F0. Logopedics Phoniatrics Vocology, 38(2), 47–51. https://doi.org/10.3109/14015439.2012.687764
  22. Johnson, K. A., Babel, M., & Fuhrman, R. A. (2020). Bilingual acoustic voice variation is similarly structured across languages. Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH, 2020-Octob, 2387–2391. https://doi.org/10.21437/Interspeech.2020-3095
  23. Keshavarz, M. H., & Ingram, D. (2002). The early phonological development of a Farsi-English bilingual child. International Journal of Bilingualism, 6(3), 255–269. https://doi.org/10.1177/13670069020060030301
  24. Kinoshita, Y. (2001). Testing Realistic Forensic Speaker A Likelihood Ratio Based Approach Using Formants [The Australian National University]. Retrieved from <https://doi.org/10.1558/ijsll.v9i1.133>.
  25. Laan, G. P. M. (1997). The contribution of intonation, segmental durations, and spectral features to the perception of a spontaneous and a read speaking style. Speech Communication, 22(1), 43–65. https://doi.org/https://doi.org/10.1016/S0167-6393(97)00012-5
  26. Ladefoged, P. (2006). A course in phonetics (5nd ed.). USA: Wadsworth Cengage Learning.
  27. Lo, J. J. H. (2021). Cross-Linguistic Speaker Individuality of Long-Term Formant Distributions: Phonetic and Forensic Perspectives. 416–420. https://doi.org/10.21437/interspeech.2021-1699
  28. McDougall, K. (2004). Speaker-specific formant dynamics: An experiment on Australian English /aI/. International Journal of Speech Language and the Law, 11(1 SE-Articles), 103–130. https://doi.org/10.1558/sll.2004.11.1.103
  29. Mok, P. P. K., Xu, R. B., & Zuo, D. (2015). Bilingual speaker identification: Chinese and English. International Journal of Speech, Language and the Law, 22(1), 57–77. https://doi.org/10.1558/ijsll.v22i1.18636
  30. Moos, A. (2010). Long-term formant distribution as a measure of speaker characteristics in read and spontaneous speech. The Phonetician, 101/102, 7–24.
  31. Nolan, F., & Grigoras, C. (2005). A case for formant analysis in forensic speaker identification. International Journal of Speech, Language and the Law, 12(2), 143–173. https://doi.org/10.1558/sll.2005.12.2.143
  32. Paradis, J. (2001). Do bilingual two-year-olds have separate phonological systems? International Journal of Bilingualism, 5(1), 19–38. https://doi.org/10.1177/13670069010050010201
  33. Park, S. J., Yeung, G., Vesselinova, N., Kreiman, J., Keating, P. A., & Alwan, A. (2018). Towards understanding speaker discrimination abilities in humans and machines for text-independent short utterances of different speech styles. The Journal of the Acoustical Society of America, 144(1), 375–386. https://doi.org/10.1121/1.5045323
  34. R Core Team. (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Retrieved from <https://www.r-project.org/>
  35. Rose, P. (2002). Forensic Speaker Identification. London: Taylor and Francis.
  36. Rose, P., & Clermont, F. (2001). A comparison of two acoustic methods for forensic speaker discrimination. Acoustics Australia, 29(1), 31–35.
  37. Sambur, M. R. (1975). Selection of Acoustic Features for Speaker Identification. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(2), 176–182. https://doi.org/10.1109/TASSP.1975.1162664
  38. Vaheb, A., Choobbasti, A. J., Sabeti, B., Mortazavi Najafabadi, S. H. E., & Safavi, S. (2018a). Mirasvoice: A bilingual (English-Farsi) speech corpus. LREC 2018 - 11th International Conference on Language Resources and Evaluation, 3, 2903–2906.
  39. Vaheb, A., Choobbasti, A. J., Sabeti, B., Mortazavi Najafabadi, S. H. E., & Safavi, S. (2018b). Mirasvoice: A bilingual (English-Farsi) speech corpus. LREC 2018 - 11th International Conference on Language Resources and Evaluation, May, 2903–2906.