نقش پلنیوم گیجگاهی در پردازش مشخصه‌های شخص و شمار در افراد دوزبانه: شواهدی از fMRI

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای تخصصی زبان‌شناسی، دانشکدة علوم انسانی، دانشگاه تربیت مدرس، تهران، ایران

2 دکترای تخصصی روان‌شناسی، استاد گروه روان‌شناسی، دانشگاه هومبولت برلین، برلین، آلمان

3 دکترای تخصصی تصویربرداری عصبی، استادیار گروه علوم اعصاب، دانشگاه علوم پزشکی تهران، تهران، ایران

چکیده

پلنیوم ­گیجگاهی یک ناحیة مغزی است که درون شیار سیلوین و بخش خلفی قشر شنوایی (شکنج هشل) قرار گرفته و به ­سبب همپوشانی ­اش با ناحیة ورنیکه، به ­عنوان کانون کارکردی شبکة زبان قلمداد می­شود. پژوهش‌های بسیاری اهمیت ویژة پلنیوم ­گیجگاهی چپ را در انواع فرایندهای شنیداری و زبان­-ویژه نشان داده­ اند. شواهد دیگری نیز بر دخالت پلنیوم ­گیجگاهی راست در توجة شنیداری و تکالیف محرک‌محور دلالت دارد. با وجود حجم گستردة بررسی‌های انجام‌شده دربارة نقش پلنیوم­ گیجگاهی، هنوز میزان دخالت این ناحیة مغزی در دوزبانگی در هاله ­ای از ابهام قرار دارد. افزون‌براین، نگارندگان علاقمندند تا نقش پلنیوم ­گیجگاهی را در مطابقة شخص-شمار در دوزبانه ­ها پیگیری کنند. به‌این‌منظور، تعداد 36 نفر دوزبانة ترکی-فارسی (21 زن) که زبان دوم­شان را به‌صورت رسمی در سن 7 سالگی آموخته بودند، انتخاب شدند. برمبنای شاخص تسلط دوزبانه، هیچ تفاوتی بین سطوح بالای بسندگی شرکت ­کنندگان در زبان اول (ترکی) و دوم (فارسی) وجود نداشت. شرکت‌کنندگان یک آزمون شنیداری قضاوت دستوری ­بودگی با الگوی زبان­گردانی جایگزین را به هنگام گرفتن تصاویر اف.ام.آر.آی اجرا کردند. یافته ­های پژوهش نشان داد که در طول اجرای یک آزمون دوزبانه، دخالت پلنیوم ­گیجگاهی چپ در مقایسه با پلنیوم ­گیجگاهی راست در مطابقة شخص-شمار بیشتر بود. همچنین، بدون در نظرگرفتن نوع زبان مورد پردازش، آزمایش فعلی نشان داد که در ناحیة پلنیوم ­گیجگاهی، جمله‌های دارای مشخصة شمار فعالیت بیشتری را در مقایسه با جمله‌های دارای مشخصة شخص ایجاد کردند که دال بر پردازش متمایز زیرساختی عبارات ارجاعی و ضمیرها در این ناحیة مغزی است.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The contribution of Planum Temporale in Number-Person features processing in bilinguals: An fMRI study

نویسندگان [English]

  • Simin Meykadeh 1
  • Werner Sommer 2
  • SeyedAmirHossein Batouli 3
1 PhD in Linguistics, Department of Linguistics, Tarbiat Modares University, Tehran, Iran
2 Professor, Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
3 Assistant Professor, Department of Neuroscience and Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
چکیده [English]

The Planum Temporale (PT) is a cortical area posterior to Heschl's gyrus and within the Sylvian fissure. Hemispheric PT asymmetry of functional activation during hearing- or language-related tasks is well-established. Due to the role of the PT in language processing, we examined its contribution to phi-feature agreement processing.
The theory of phi-features (Ackema and Neeleman, 2018, 2019) has proposed two core hypotheses for Number and Person agreements. First, R-expressions do not have Person, while pronouns do. Second, all Persons have a Person feature. By contrast, singular is the absence of a Number feature. This account is based, among others, on the evidence reported by Zawiszewski, Santesteban and Laka (2016) and Mancini et al. (2017), which proposes two generalizations for fMRI activation when the verb carries incorrect agreement. In sentences with R-expressions as subject, Person behaves qualitatively differently from Number and will have a quantitatively larger effect. In sentences with pronouns as subject, there are no qualitative differences between Person and Number, but Person will have a quantitatively larger effect. Recently, Meykadeh et al. (in press) addressed the case where R-expressions and Pronouns were used as subject, respectively, for Number and Person Violations and showed that Number Violations evoked more effects than Person Violations in posterior Superior Temporal Gyrus. The authors suggested that R-expression and pronoun processing are qualitatively different. It is currently unknown whether this pattern is also true for the PT area. Hence, in the present analysis we investigated the contribution of PT to phi-features processing of L1 and L2 sentences.
The current study addresses the following questions:

To what extent is left and right PT involved in phi-features processing by balanced bilinguals?
How does the PT area contribute to L1-L2 Number-Person phi-features processing?
Is the PT area equipped with feature-mapping mechanism to identify Number and Person features?

To answer these questions, we adapted a bilingual task with an alternating language switching paradigm, in a population of balanced bilinguals and applied fMRI recordings.

کلیدواژه‌ها [English]

  • Turkish-Persian balanced bilinguals
  • Number-Person features
  • Planum Temporale
  • left hemisphere
  • fMRI
  1. پورمحمد، مهدی (1393). روان­شناسی زبان. تهران: سمت. Retrieved from <https://samta.samt.ac.ir/product/18809>
  2. خدادادی، مجتبی، حسن اسدزاده، منیر کلانتر قریشی و حسین امانی (1393). نرم‌افزار حافظه کاری دانیمن و کارپنتر. تهران: موسسه تحقیقات علوم رفتاری‌- شناختی سینا.Retrieved from <https://www.sinapsycho.com/Shop/Product/1342>
  3. عباسی، آزیتا (1393). «تکواژ صفر». علم زبان. دورة 2. شمارة 2. صص 13-36.  https://doi.org/10.22054/ls.2014.1078
  4. میکده، سیمین (1400). بررسی اثرات بسندگی زبان و سن یادگیری زبان دوم بر دستگاه عصبی برای پردازش صرفی-نحوی با استفاده از ERPs و fMRI. رسالة دکتری. دانشگاه تربیت­ مدرس. Retrieved from <https://parseh.modares.ac.ir/thesis.php?id=10004542&sid=1&slc_lang=en>
  5. میکده، سیمین، ورنر زومر و سید امیر حسین بتولی (1402الف). «تالاموس و دوزبانگی: شواهدی از fMRI». زبانشناسی و گویش­های خراسان. دورة 15. شمارة 3. صص 29-51. https://doi.org/10.22067/jlkd.2023.83396.1179
  6. میکده، سیمین، ورنر زومر و سید امیر حسین بتولی (1402ب). «مخچه و مطابقة دستوری در دوزبانه ­ها: شواهدی از قضاوت دستوری­ بودگی با استفاده از fMRI.» علم زبان. دورة 10. شمارة 18. صص 309-342. https://doi.org/10.22054/ls.2023.74871.1591
  7. میکده، سیمین، ورنر زومر و سیدامیرحسین بتولی (1403). «پوتامن و درک جملات زبان اول و دوم: شواهدی از تصویربرداری تشدید مغناطیسی عملکردی». نشریة پژوهش ­های زبان­شناسی. دورة 16. شمارة 1. صص 95-110. https://doi.org/10.22108/jrl.2024.138007.1777
  8. Abbasi, A. (2014). Zero morpheme. Language Science2(2), 13-36. https://doi.org/10.22054/ls.2014.1078 [In Persian]
  9. Ackema, P., & Neeleman, A. (2018). Features of person: From the inventory of persons to their morphological realization. MIT Press. https://mitpress.mit.edu/9780262535618/features-of-person/
  10. Ackema, P., & Neeleman, A. (2019). Processing differences between person and number: A theoretical interpretation. Frontiers in psychology, 10(211), 1-10. https://doi.org/10.3389/fpsyg.2019.00211
  11. Albouy, P., Benjamin, L., Morillon, B., & Zatorre, R. J. (2020). Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science367(6481), 1043-1047. https://doi.org/10.1126/science.aaz3468
  12. Altarelli, I., Leroy, F., Monzalvo, K., Fluss, J., Billard, C., Dehaene-Lambertz, G., Galaburda, A. M., & Ramus, F. (2014). Planum temporale asymmetry in developmental dyslexia: Revisiting an old question. Human brain mapping, 35(12), 5717–5735. https://doi.org/10.1002/hbm.22579
  13. Bloom, J. S., Garcia-Barrera, M. A., Miller, C. J., Miller, S. R., & Hynd, G. W. (2013). Planum temporale morphology in children with developmental dyslexia. Neuropsychologia, 51(9), 1684-1692. https://doi.org/10.1016/j.neuropsychologia.2013.05.012
  14. Chance, S. A., Casanova, M. F., Switala, A. E., & Crow, T. J. (2008). Auditory cortex asymmetry, altered minicolumn spacing and absence of ageing effects in schizophrenia. Brain, 131(12), 3178-3192. https://doi.org/10.1093/brain/awn211
  15. Declerck, M., & Philipp, A. M. (2015). A review of control processes and their locus in language switching. Psychonomic bulletin & review, 22(6), 1630-1645. https://doi.org/10.3758/s13423-015-0836-1
  16. Den Dikken M. (2019). The attractions of agreement: Why person is different. Frontiers in psychology, 10(978), 1-18. https://doi.org/10.3389/fpsyg.2019.00978
  17. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Jr, Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1-2), 145-177. https://doi.org/10.1016/j.cognition.2003.11.002
  18. Dunn, A. L., & Fox Tree, J. E. (2009). A quick, gradient Bilingual Dominance Scale. Bilingualism: Language and Cognition, 12(3), 273–289. https://doi.org/10.1017/S1366728909990113
  19. Embick, D., Marantz, A., Miyashita, Y., O'Neil, W., & Sakai, K. L. (2000). A syntactic specialization for Broca's area. Proceedings of the National Academy of Sciences of the United States of America, 97(11), 6150-6154. https://doi.org/10.1073/pnas.100098897
  20. Friederici, A. D., Chomsky, N., Berwick, R. C., Moro, A., & Bolhuis, J. J. (2017). Language, mind, and brain. Nature human behaviour, 1(10), 713–722. https://doi.org/10.1038/s41562-017-0184-4
  21. Friston K. (2012). Ten ironic rules for non-statistical reviewers. NeuroImage, 61(4), 1300-1310. https://doi.org/10.1016/j.neuroimage.2012.04.018
  22. Fukutomi, H., Glasser, M. F., Zhang, H., Autio, J. A., Coalson, T. S., Okada, T., Togashi, K., Van Essen, D. C., & Hayashi, T. (2018). Neurite imaging reveals microstructural variations in human cerebral cortical gray matter. NeuroImage, 182, 488–499. https://doi.org/10.1016/j.neuroimage.2018.02.017
  23. Galaburda, A. M., LeMay, M., Kemper, T. L., & Geschwind, N. (1978). Right-left asymmetrics in the brain. Science, 199(4331), 852-856. https://doi.org/10.1126/science.341314
  24. Geschwind, N., & Levitsky, W. (1968). Human brain: Left-right asymmetries in temporal speech region. Science, 161(3837), 186–187. https://doi.org/10.1126/science.161.3837.186
  25. Green, D. W. (2003). The neural basis of the lexicon and the grammar in L2 acquisition: The convergence hypothesis. In R. van Hout, A. Hulk, F. Kuiken & R. Towell (Eds.), The interface between syntax and the lexicon in second language acquisition (pp. 197-218). John Benjamins. https://doi.org/10.1075/lald.30.10gre
  26. Greve, D. N., Van der Haegen, L., Cai, Q., Stufflebeam, S., Sabuncu, M. R., Fischl, B., & Brysbaert, M. (2013). A surface-based analysis of language lateralization and cortical asymmetry. Journal of cognitive neuroscience25(9), 1477-1492. https://doi.org/10.1162/jocn_a_00405
  27. Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in neurosciences25(7), 348–353. https://doi.org/10.1016/S0166-2236(02)02191-4
  28. Hagoort, P. (2013). MUC (memory, unification, control) and beyond. Frontiers in Psychology, 4(416), 1-13. https://doi.org/10.3389/fpsyg.2013.00416
  29. Hartsuiker, R. J., Pickering, M. J., & Veltkamp, E. (2004). Is syntax separate or shared between languages? Cross-linguistic syntactic priming in Spanish-English bilinguals. Psychological science, 15(6), 409-414. https://doi.org/10.1111/j.0956-7976.2004.00693.x
  30. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends in cognitive sciences4(4), 131-138. https://doi.org/10.1016/s1364-6613(00)01463-7
  31. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature reviews neuroscience8(5), 393–402. https://doi.org/10.1038/nrn2113
  32. Hirnstein, M., Westerhausen, R., & Hugdahl, K. (2013). The right planum temporale is involved in stimulus-driven, auditory attention--evidence from transcranial magnetic stimulation. PloS one8(2), e57316. https://doi.org/10.1371/journal.pone.0057316
  33. Hollingshead, A. (1975). Four Factor Index of Social Status [Unpublished
    Manuscript]. New Haven, CT: Yale University Department of Sociology. https://www.scirp.org/reference/referencespapers?referenceid=557417
  34. Hunter, M. D., Griffiths, T. D., Farrow, T. F., Zheng, Y., Wilkinson, I. D., Hegde, N., Woods, W., Spence, S. A., & Woodruff, P. W. (2003). A neural basis for the perception of voices in external auditory space. Brain126(1), 161–169. https://doi.org/10.1093/brain/awg015
  35. Indefrey, P., and Cutler, A. (2004). Prelexical and lexical processing in listening. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences III, (3rd ed., pp. 756-774). MIT Press. https://pure.mpg.de/rest/items/item_58547_3/component/file_58548/content
  36. Jakab, A., Meuwly, E., Feldmann, M., Rhein, M. V., Kottke, R., O'Gorman Tuura, R., Latal, B., Knirsch, W., & Research Group Heart and Brain (2019). Left temporal plane growth predicts language development in newborns with congenital heart disease. Brain, 142(5), 1270–1281. https://doi.org/10.1093/brain/awz067
  37. Khodadadi, M., Asadzadeh, H., Kalantar Ghoreishi, M., and Amani, H. (2014). Working memory test. Daneman M. & Carpenter P. A., Software. Tehran: Institute for Behavioral & Cognitive Sciences. https://www.sinapsycho.com/Shop/Product/1342 [In Persian]
  38. Knaus, T. A., Kamps, J., Foundas, A. L., & Tager-Flusberg, H. (2018). Atypical PT anatomy in children with autism spectrum disorder with expressive language deficits. Brain imaging and behavior12(5), 1419–1430. https://doi.org/10.1007/s11682-017-9795-7
  39. Lau, E., Stroud, C., Plesch, S., & Phillips, C. (2006). The role of structural prediction in rapid syntactic analysis. Brain Lang., 98, 74–88. https://doi.org/10.1016/j.bandl.2006.02.003
  40. Mancini, S. Molinaro, N & Carreiras, M. (2013). Anchoring agreement in comprehension. Language and Linguistics Compass, 7(1), 1-21. https://doi.org/10.1111/lnc3.12008
  41. Mancini, S., Quiñones, I., Molinaro, N., Hernandez-Cabrera, J. A., & Carreiras, M. (2017). Disentangling meaning in the brain: Left temporal involvement in agreement processing. Cortex86, 140-155. https://doi.org/10.1016/j.cortex.2016.11.008
  42. Meykadeh, S. (2021). An investigation of the effects of language proficiency and age of acquisition on neural organization for morphosyntactic processing using ERPs and fMRI [Doctoral dissertation, Tarbiat Modares University], Tehran, Iran. https://parseh.modares.ac.ir/thesis.php?id=10004542&sid=1&slc_lang=en [In Persian]
  43. Meykadeh, A., Golfam, A., Batouli, SAH. & Sommer, W. (2021). Overlapping but language-specific mechanisms in morphosyntactic processing in highly competent L2 acquired at school entry: fMRI evidence from an alternating language switching task. Frontiers in Human Neuroscience, 26(15), 1-13. https://doi.org/10.3389/fnhum.2021.728549
  44. Meykadeh, A., Golfam, A., Nasrabadi, AM., Ameri, H. & Sommer, W. (2021). First Event-Related Potentials evidence of auditory morphosyntactic processing in a subject-object-verb nominative-accusative language (Farsi). Frontiers in psychology, 16(12), 1-9. https://doi.org/10.3389/fpsyg.2021.698165
  45. Meykadeh, S., Golfam, A., Batouli, S. A. H., & Sommer, W. (2023a). The neural basis of Number and Person phi-features processing: An fMRI study in highly proficient bilinguals. Bilingualism: Language and Cognition, 1–16. https://doi.org/10.1017/S1366728923000615
  46. Meykadeh, S., Khadem, A., Sulpizio, S. & Sommer, W. (2023b). Functional connectivity during morphosyntactic processing: An fMRI study in balanced Turkish-Persian bilinguals. Journal of Neurolinguistics, 68 (101162), 1-12. https://doi.org/10.1016/j.jneuroling.2023.101162
  47. Meykadeh, S. & Sommer, W., Batouli, SAH. (2023a). Thalamus and bilingualism: Evidence from fMRI. Linguistics and Khorasan Dialects. 15(3), 29-51. https://doi.org/10.22067/jlkd.2023.83396.1179 [In Persian]
  48. Meykadeh, S. & Sommer, W., Batouli, SAH. (2023b). the cerebellum and grammatical agreement in bilinguals: Evidence from grammaticality judgments using fMRI. Language Science, 10(180), 309-342. https://doi.org/10.22054/ls.2023.74871.1591 [In Persian]
  49. Meykadeh, S., Sommer, W., & Batouli, S. (2024). Putamen and L1-L2 sentence comprehension: Evidence from functional magnetic resonance mapping. Journal of Researches in Linguistics, 16(1), 95-110. https://doi.org/10.22108/jrl.2024.138007.1777 [In Persian]
  50. Moffat, S. D., Hampson, E., & Lee, D. H. (1998). Morphology of the planum temporale and corpus callosum in left handers with evidence of left and right hemisphere speech representation. Brain121(12), 2369–2379. https://doi.org/10.1093/brain/121.12.2369
  51. Obleser, J., & Kotz, S. A. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cerebral cortex20(3), 633-640. https://doi.org/10.1093/cercor/bhp128
  52. Ocklenburg, S., Friedrich, P., Fraenz, C., Schlüter, C., Beste, C., Güntürkün, O., & Genç, E. (2018). Neurite architecture of the planum temporale predicts neurophysiological processing of auditory speech. Science advances4(7), 1-8. https://doi.org/10.1126/sciadv.aar6830
  53. Pahs, G., Rankin, P., Helen Cross, J., Croft, L., Northam, G. B., Liegeois, F., Greenway, S., Harrison, S., Vargha-Khadem, F., & Baldeweg, T. (2013). Asymmetry of planum temporale constrains interhemispheric language plasticity in children with focal epilepsy. Brain136(10), 3163–3175. https://doi.org/10.1093/brain/awt225
  54. Perani, D., & Abutalebi, J. (2005). The neural basis of first and second language processing. Current opinion in neurobiology15(2), 202–206. https://doi.org/10.1016/j.conb.2005.03.007
  55. Poldrack, R. A. (2007). Region of interest analysis for fMRI. Social Cognitive and Affective Neuroscience, 2(1), 67-70. https://doi.org/10.1093/scan/nsm006
  56. Pollmann, S. (2010). A Unified Structural-Attentional Framework for Dichotic Listening. In Kenneth Hugdahl, and Rene Westerhausen (Eds.), The Two Halves of the Brain: Information Processing in the Cerebral Hemispheres (pp. 441-468). MIT Press. https://doi.org/10.7551/mitpress/9780262014137.003.0326
  57. Pourmohammad, M. (2019). Psycholinguistics. SAMT. https://samta.samt.ac.ir/product/18809 [In Persian]
  58. Price, C. J. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences1191, 62-88. https://doi.org/10.1111/j.1749-6632.2010.05444.x
  59. Purves, D., Augustine, G. J., Fitzpatrick, D., Hall, W. C., LaMantia, A., Mooney, R. D., Platt, M. L., & White, L. E. (2018). Neuroscience (6th ed.). Sinauer Associates.
  60. Ratnanather, J. T., Poynton, C. B., Pisano, D. V., Crocker, B., Postell, E., Cebron, S., Ceyhan, E., Honeycutt, N. A., Mahon, P. B., & Barta, P. E. (2013). Morphometry of superior temporal gyrus and planum temporale in schizophrenia and psychotic bipolar disorder. Schizophrenia research150(2-3), 476–483. https://doi.org/10.1016/j.schres.2013.08.014
  61. Rodriguez-Fornells, A., Rotte, M., Heinze, H. J., Nösselt, T., & Münte, T. F. (2002). Brain potential and functional MRI evidence for how to handle two languages with one brain. Nature415(6875), 1026–1029. https://doi.org/10.1038/4151026a
  62. Rojas, D. C., Camou, S. L., Reite, M. L., & Rogers, S. J. (2005). Planum temporale volume in children and adolescents with autism. Journal of autism and developmental disorders35(4), 479–486. https://doi.org/10.1007/s10803-005-5038-7
  63. Schmitz, J., Fraenz, C., Schlüter, C., Friedrich, P., Jung, R. E., Güntürkün, O., Genç, E., & Ocklenburg, S. (2019). Hemispheric asymmetries in cortical gray matter microstructure identified by neurite orientation dispersion and density imaging. NeuroImage189, 667–675. https://doi.org/10.1016/j.neuroimage.2019.01.079
  64. Sommer, I., Ramsey, N., Kahn, R., Aleman, A., & Bouma, A. (2001). Handedness, language lateralisation and anatomical asymmetry in schizophrenia: Meta-analysis. The British journal of psychiatry178, 344-351. https://doi.org/10.1192/bjp.178.4.344
  65. Steinmetz H. (1996). Structure, functional and cerebral asymmetry: In vivo morphometry of the planum temporale. Neuroscience and biobehavioral reviews20(4), 587–591. https://doi.org/10.1016/0149-7634(95)00071-2
  66. Tzourio-Mazoyer, N., & Mazoyer, B. (2017). Variations of planum temporale asymmetries with Heschl's Gyri duplications and association with cognitive abilities: MRI investigation of 428 healthy volunteers. Brain structure & function222(6), 2711–2726. https://doi.org/10.1007/s00429-017-1367-5
  67. Tzourio-Mazoyer, N., Crivello, F., & Mazoyer, B. (2018). Is the planum temporale surface area a marker of hemispheric or regional language lateralization? Brain structure & function223(3), 1217–1228. https://doi.org/10.1007/s00429-017-1551-7
  68. Tzourio-Mazoyer, N., Maingault, S., Panzieri, J., Pepe, A., Crivello, F., & Mazoyer, B. (2019). Intracortical myelination of heschl's gyrus and the planum temporale varies with heschl's duplication pattern and rhyming performance: An investigation of 440 healthy volunteers. Cerebral cortex29(5), 2072-2083. https://doi.org/10.1093/cercor/bhy088
  69. Ullman, M. T. (2001). The neural basis of lexicon and grammar in first and second language: The declarative/procedural model. Bilingualism: language and cognition. 4(2), 105-122. https://doi.org/10.1017/S1366728901000220
  70. Zatorre, R. J., Belin, P., & Penhune, V. B. (2002). Structure and function of auditory cortex: music and speech. Trends in cognitive sciences6(1), 37–46. https://doi.org/10.1016/s1364-6613(00)01816-7
  71. Zawiszewski, A., Santesteban, M., & Laka, I. (2016). Phi-features reloaded: an
    even-related potential study on Person and Number agreement processing. Applied Psycholinguistics, 37(3), 601-626. https://doi.org/10.1017/S014271641500017X